sábado, 7 de novembro de 2009

Tipos de reatores

Reatores de fissão

Existem vários tipos de reatores, reatores de água leve (ingl. Light Water reactor ou LWR), reatores de água pesada (ingl. Heavy Water Reactor ou HWR), reator de rápido enriquecimento ou "reatores incubadores" (ingl. Breeder reactor) e outros, dependendo da substância moderador usada. Um reator de rápido enriquecimento gera mais material físsil (combustível) do que consome. A primeira reação em cadeia foi realizada num reator de grafite. O reator que levou o acidente nuclear de Chernobyl também era de grafite. A maioria dos reatores em uso para geração de energia elétrica no mundo são do tipo água leve. A nova geração de usinas nucleares, denominada G3+, incorpora conceitos de segurança passiva, pelos quais todos os sistemas de segurança da usina são passivos, o que as tornam intrínsecamente seguras. Como reatores da próxima geração (G4) são considerados reatores de sal fundido ou MSR (ingl. molten salt reactor). Ainda em projeto conceitual, será baseada no conceito de um reator de rápido enriquecimento.

Reatores de fusão

O emprego pacífico ou civil da energia de fusão está em fase experimental, existindo incertezas quanto a sua viabilidade técnica e econômica.

O processo baseia-se em aquecer suficientemente núcleos de deutério até obter-se o estado plasmático. Nesse estado, os átomos de hidrogênio se desagregam permitindo que ao se chocarem ocorra entre eles uma fusão produzindo átomos de hélio. A diferença energética entre dois núcleos de deutério e um de hélio será emitida na forma de energia que manterá o estado plasmático com sobra de grande quantidade de energia útil.

A principal dificuldade do processo consiste em confinar uma massa do material no estado plasmático já que não existem reservatórios capazes de suportar as elevadas temperaturas a ele associadas. Um meio é a utilização do confinamento magnético.

Os cientistas do projeto Iter, do qual participam o Japão e a União Européia, pretendem construir uma central experimental de fusão para comprovar a viabilidade econômica do processo como meio de obtenção de energia.

Tipos de reações nucleares

A reação nuclear é a modificação da composição do núcleo atômico de um elemento, podendo transformar-se em outro ou outros elementos. Esse processo ocorre espontaneamente em alguns elementos. O caso mais interessante é a possibilidade de provocar a reação mediante técnicas de bombardeamento de nêutrons ou outras particulas.

Existem duas formas de reações nucleares: a fissão nuclear, onde o núcleo atômico subdivide-se em duas ou mais partículas; e a fusão nuclear, na qual ao menos dois núcleos atômicos se unem para formar um novo núcleo.

Exemplo

Apenas um exemplo das mais de 100 possíveis fissões de urânio-235: Urânio captura um nêutron, torna-se instável e fraciona em bário e criptônio com emissão de dois nêutrons.

235U + 1n à 236U à 139Ba + 95Kr + 2 1n

Com esta reação Hahn e Straßmann demonstraram a fissão em 1938 através da presença de bário na amostra, usando espectroscopia de massa.

Energia Nuclear

Energia nuclear é a energia liberada numa reação nuclear ou seja, em processos de transformação de núcleos atômicos. Alguns isótopos de certos elementos apresentam a capacidade de se transformar em outros isótopos ou elementos através de reações nucleares, emitindo energia durante esse processo. Baseia-se no princípio da equivalência de energia e massa (observado por Albert Einstein), segundo a qual durante reações nucleares ocorre transformação de massa em energia. Foi descoberta por Hahn, Straßmann e Meitner com a observação de uma fissão nuclear depois da irradiação de urânio com nêutrons.

A tecnologia nuclear tem a finalidade de aproveitar a energia nuclear, convertendo o calor emitido na reação em energia elétrica. Isso pode acontecer controladamente em reator nuclear ou descontroladamente em bomba atômica. Em outras aplicações aproveita-se da radiação ionizante emitida.

segunda-feira, 2 de novembro de 2009

Acidente nuclear

Acidente nuclear

As instalações nucleares são construções muito complexas, devido às diversas tecnologias industriais empregadas, e ao elevado grau de segurança que é adaptado. As reações nucleares, por suas características, são altamente perigosas. A perda do controle durante o processo pode elevar a temperatura a um valor que levaria à fusão do reator, e/ou ao vazamento de radiações nocivas para o ambiente exterior, comprometendo a saúde dos seres vivos.

Lixo Nuclear

Lixo nuclear

A energia nuclear, além de produzir uma grande quantidade de energia eléctrica, também produz resíduos nucleares que devem ser isolados em depósitos impermeáveis durante longo tempo. Por outro lado, os reatores das centrais nucleares não produzem gases tóxicos, que é a característica da combustão dos combustíveis fósseis.

Usina Nuclear

usina nuclear é uma instalação industrial empregada para produzir electricidade a partir de energia nuclear, que se caracteriza pelo uso de materiais radioactivos que através de uma reação nuclear produzem calor. Este calor é empregado por um ciclo termodinâmico convencional para mover um alternador e produzir energia eléctrica.

As centrais nucleares apresentam um ou mais reatores, que são compartimentos impermeáveis à radiação, em cujo interior estão colocados barras ou outras configurações geométricas de minerais com algum elemento radioactivo (em geral o urânio). No processo de decomposição radioactiva, estabelece-se uma reação em cadeia que é sustentada e moderada mediante o uso de elementos auxiliares, dependendo do tipo de tecnologia empregada.

domingo, 1 de novembro de 2009

Reator Nuclear

Um reator nuclear, é uma câmara de resfriamento hermética, blindada contra a radiação, onde é controlada uma reação nuclear para a obtenção de energia, produção de materiais fissionáveis como o plutônio para armamentos nucleares, propulsão de submarinos e satélites artificiais ou para pesquisas.

Uma central nuclear pode conter vários reatores. Atualmente apenas os reatores nucleares de fissão são empregados para a produção de energia comercial, porém os reatores nucleares de fusão estão sendo empregados em fase experimental.

De uma forma simples, as primeiras versões de reator nuclear produzem calor dividindo átomos, diferentemente das estações de energia convencionais, que produzem calor queimando combustível. O calor produzido serve para ferver água, que irá fazer funcionar turbinas a vapor para gerar electricidade.

Um reator produz grandes quantidades de calor e intensas correntes de radiação neutrónica e gama. Ambas são mortais para todas as formas de vida mesmo em quantidades pequenas, causando doenças, leucemia e, por fim, a morte. O reactor deve estar rodeado de um espesso escudo de cimento e aço, para evitar fugas prejudiciais de radiação. As matérias radioactivas são manejadas por controle remoto e armazenadas em contentores de chumbo, um excelente escudo contra a radiação.

Reator nuclear de fissão

Varetas de controlo no núcleo, de materiais absorventes de nêutrons, permitem regular o ritmo da cisão. Estas serão metidas ou retiradas consoante a necessidade de estabilização.

Num reactor nuclear de fissão utiliza-se o urânio natural, na maior parte dos casos - uma mistura de U-238 e de U-235 - por vezes enriquecido com extra U-235. O U-238 tem tendência para absorver os neutrões de alta velocidade originados pela divisão dos átomos U-235, mas não absorve nêutrons lentos tão rapidamente. Assim, num reactor é incluída uma substância moderadora que, juntamente com o urânio, abranda os nêutrons. O U-238, por sua vez, já não os absorve tão facilmente e a cisão continua.

Um reator nuclear de fissão apresenta, essencialmente, as seguintes partes:

  1. Combustível: Isótopo fissionável e/ou fértil (aquele que pode ser convertido em fissionável por ativação neutrônica): Urânio-235, Urânio-238, Plutônio-239, Tório-232, ou misturas destes (o combustível típico atualmente é o MOX, mistura de óxidos de urânio e plutônio).
  2. Moderador: Água, água pesada, hélio, grafite, sódio metálico: Cumprem a função de reduzir a velocidade dos neutrões produzidos na fissão, para que possam atingir outros átomos fissionáveis mantendo a reação.
  3. Refrigerador: Água, água pesada, dióxido de carbono, hélio, sódio metálico: Conduzem o calor produzido durante o processo até a turbina geradora de eletricidade ou ao propulsor.
  4. Refletor: Água, água pesada, grafite, urânio: Reduz o escapamento de nêutrons aumentando a eficiência do reator.
  5. Blindagem: Concreto, chumbo, aço, água: Evita o escapamento de radiação gama e nêutrons rápidos.
  6. Material de controlo: Cádmio ou Boro: Finalizam a reação em cadeia, pois são óptimos absorventes de nêutrons. Geralmente são usados na forma de barras (de aço borado, por exemplo) ou bem dissolvido no refrigerador.
  7. Elementos de Segurança: Todas as centrais nucleares de fissão apresentam múltiplos sistemas de segurança. Os ativos que respondem a sinais elétricos e os passivos que atuam de forma natural como a gravidade, por exemplo. A contenção de betão que rodeia os reactores é o principal sistema de segurança, evitando que ocorra vazamento de radiação ao exterior.

O núcleo do reactor é construído dentro de um forte recipiente de aço que contém varetas de combustível feitas de materiais cindíveis (fissionáveis) metidos dentro de tubos. Estas varetas produzem calor enquanto o combustível sofre a cisão. Varetas de controlo, geralmente de boro ou cádmio - para absorver facilmente os nêutrons -, são introduzidas e retiradas do núcleo (conforme a necessidade de estabilizar a reacção), variando a corrente de neutrões no núcleo, controlando o ritmo de cisão e, portanto, o calor produzido. As varetas estão rodeadas por um moderador, que reduz a velocidade a que os nêutrons são produzidos pelo combustível. Percorrendo o núcleo corre um refrigerante, líquido ou gasoso, que, ao ser aquecido pelo calor libertado, gera vapor de água que será canalizado para turbinas.

Tipos de reatores de fissão

WWER-1000 (Water-Water Energetic Reactor, força elétrica de 1000 megawatt) é um reactor russo de energia nuclear do tipo PWR

Atualmente existem vários tipos de reatores nucleares de fissão:

LWR - Light Water Reactors: Utilizam como refrigerante e moderador a água e como combustível o urânio enriquecido. Os mais utilizados são os BWR (Boiling Water Reactor ou Reator de água em ebulição ) e os PWR (Pressure Water Reactor ou Reatores de água a pressão), estes últimos considerados atualmente como padrão. Em 2001 existiam 345 em funcionamento.

CANDU - Canada Deuterium Uranium: Utilizam como moderador água pesada (cuja molécula é composta por dois átomos de deutério e um átomo de oxigênio) e como refrigerante água comum. Como combustível usam urânio comum. Existiam 34 em operação em 2001.

FBR - Fast Breeder Reactors: Utilizam nêutrons rápidos no lugar de térmicos para o processo da fissão. Como combustível utilizam plutônio e como refrigerante sódio líquido. Este reator não necessita de moderador. Apenas 4 em operação em 2001.

HTGR - High Temperature Gás-cooled Reactor: Usa uma mistura de tório e urânio como combustível. Como refrigerante utiliza o hélio e como moderador grafite. Existiam 34 em funcionamento em 2001.

RBMK - Reactor Bolshoy Moshchnosty Kanalny: Sua principal função é a produção de plutônio, e como subproduto gera eletricidade. Utiliza grafite como moderador , água como refrigerante e urânio enriquecido como combustível. Pode recarregar-se durante o funcionamento. Apresenta um coeficiente de reatividade positivo. Existiam 14 em funcionamento em 2001.

ADS - Accelerator Driven System: Utiliza uma massa subcrítica de tório. A fissão é produzida pela introdução de nêutrons no reator de partículas através de um acelerador de partículas. Ainda se encontra em fase de experimentação, e uma de suas funções fundamentais será a eliminação de resíduos nucleares produzidos em outros reatores de fissão.

Produção de combustível

Alguns tipos de reatores podem efetivamente produzir mais combustível que aquele que consomem. Trata-se do reactor rápido. Não tem moderador e o seu combustível é altamente enriquecido: urânio ou plutônio. O núcleo é pequeno e a reação em cadeia processa-se rapidamente, produzindo maiores quantidades de calor do que nos outros reatores «termais». São produzidas grandes quantidades de nêutrons, imediatamente absorvidos por um cobertor de urânio 238 colocado em redor do núcleo. Isto não causa cisão no urânio, mas o converte em plutônio 239, que pode depois ser separado e utilizado como combustível no reator rápido. Desta maneira, o reactor rápido produz combustível à medida que o consome. Convertendo urânio 238 não cindível (fissionável) num combustível útil, o reator rápido poderia prolongar as reservas de combustível nuclear do mundo em cerca de sessenta vezes.

Reactor nuclear de fusão

Instalação destinada para a produção de energia através da fusão nuclear. A pesquisa neste campo existe há mais de 50 anos e já, há vários anos, tem sido possível produzir uma reação de fusão nuclear controlada num vaso de contenção. Não se tem conseguido ainda, entretanto, manter uma reação de fusão controlada até atingir o ponto de "breakeven" (ou seja uma situação na qual a quantidade de energia fornecida para iniciar e manter a reação seja igual ou menor que a quantidade de energia libertada pela reação assim produzida). o processo é caracterizado por grande libertação de energia.

Reações de fusão nuclear juntam dois núcleos atômicos para formar um. Inicialmente, isso requer uma quantidade muito elevada de energia para vencer a repulsão eletromagnética inerente entre estes núcleos. A diferença em massa entre os dois núcleos iniciais e aquele resultante da reação (ligeiramente mais leve que a soma dos dois precursores) é convertida em uma enorme quantidade de energia conforme previsto pelo Einstein, na sua equação E=mc².

Uma vez que os núcleos de elementos mais leves sofrem fusão mais facilmente do que os de elementos mais pesados, o hidrogênio, o elemento mais leve, e também o mais abundante do universo, é o melhor combustível para fusão. De fato, uma mistura de dois dos isótopos de hidrogênio, o deutério e o trítio (D-T), apresenta a razão mais baixa entre a energia necessária para provocar a reação de fusão e a energia (potencialmente muito maior) liberada por esta reação; como prova disso, surgiram os estudos e adaptações da a primeira bomba de hidrogénio. Por esta razão, a maior parte dos esforços atuais para desenvolver um reator de fusão de "primeira geração" concentra-se na utilização do D-T como combustível.

Deve-se ressaltar, entretanto, que misturas alternativas existem que, apesar de exigirem um fornecimento de energia inicial maior, seriam mais simples de produzir e/ou controlar e há até combustíveis candidatos que não emitiriam nêutrons ao sofrer a reação de fusão, os chamados combustíveis aneutrônicos.

Basicamente, então, uma das maiores dificuldades é a obtenção de uma enorme pressão e temperatura que o processo requer, as quais são encontradas, na natureza, somente no interior de uma estrela. Outro problema é que a utilização de muitos dos possíveis combustíveis (inclusive o D-T) resulta na emissão de nêutrons pelo plasma durante fusão, os quais bombardeiam os componentes internos do reator, tornado-os radioativos. Para se conseguir a fusão é necessária mais do que uma alta temperatura: tem de existir plasma suficiente para que os núcleos se encontrem e se fundam, e a temperatura elevada tem de ser produzida por tempo suficiente para que isso aconteça. Porém, a combinação certa de todos estes factores mostra-se, até agora, impossível de alcançar.

Ao longo dos últimos anos, vários grupos de engenheiros e cientistas têm se dedicado ao desenvolvimento de novas ligas metálicas, cujas composições químicas são criteriosamente especificados para somente incluir elementos que formarão isótopos de meia-vida curta, sob este bombardeamento num reator (materiais de baixa ativação). Desta forma pretende-se tornar factível projetar componentes com materias que permitirão reciclagem após somente algumas dezenas de anos de estocagem segura (ao contrário dos resíduos radioativos de reatores de fissão, por exemplo, cujas meias-vidas longas exigem sistemas complexos de proteção para períodos muito longos).

Alguns pesquisadores já chegaram a caracterizar vários dos aspectos mais críticos na aplicação prática, em serviço real, de tais matérias como, por exemplo, conformabilidade, soldabilidade e resistência à fluência conforme apresentado no livro "Investigations of the Formability, Weldability and Creep Resistance of Some Potential Low-activation Austenitic Stainless Steels for Fusion Reactor Applications (ISBN 0853111480): A.H. Bott, G.J. Butterworth, F. B. Pickering".

Núcleo de um pequeno reator nuclear utilizado para pesquisas

Atualmente existem duas linhas de investigação, o confinamento inercial e o confinamento magnético:

Confinamento inercial: Consiste em conter a fusão mediante o impulso de partículas ou de raios laser projetados contra as partículas do combustível, que provocam sua ignição instantânea.

Confinamento magnético: Consiste em manter o material que irá fundir num campo magnético enquanto se tenta alcançar a temperatura e pressão necessárias. Uma forte corrente eléctrica passa através do hidrogénio para o aquecer e formar um plasma, enquanto um campo magnético comprime o plasma e o impede de tocar nas paredes. Mesmo que toque no recipiente, não existe perigo, já que só são aquecidas quantidades muito pequenas de hidrogénio; as paredes arrefecem simplesmente o plasma mais do que o plasma aquece as paredes.

Os primeiros modelos magnéticos, americanos, conhecidos como Stellarator geravam o campo diretamente num reator toroidal, com o problema da infiltração do plasma entre as linhas do campo.

Os engenheiros russos melhoram este modelo para o Tokamak na qual um enrolamento de bobina primária induzia um campo sobre o plasma, que é condutor, utilizando-o como um enrolamento secundário. Porém, devido a sua resistência, o plasma sofria aquecimento.

Embora o maior (2004) reator deste tipo, o JET [1] ainda não tenha atingido a temperatura (1 milhão de graus) e a pressão necessárias para a manutenção da reação, em 1997 este reator experimental, de facto, atingiu um pico de potência de fusão de 16MWs, ainda um recorde mundial (2004). A mesma experiência alcançou um valor de Q=0,7 . (Q é a razão entre a energia gerada por esta reação e a potência fornecida para manter a fusão. Uma reação auto-sustentável requer Q>1).

Um reator Tokamak ainda maior, o ITER, está a ser projetado, unindo esforços internacionais para a obtenção da fusão.

Também existe uma linha de pesquisa nos EUA, o NIF (National Ignition Facility), que busca através de um confinamento inercial gerado por 192 lasers de alta potência obter uma fusão nuclear com Q>1.

Propulsão Nuclear

Propulsão nuclear designa uma grande variedade de métodos de propulsão, os quais usam alguma forma de reacção nuclear como fonte primária de potência. Muitos submarinos militares e um número crescente de grandes navios – quebra-gelos e porta-aviões, usam reactores nucleares como fonte de potência. Adicionalmente, vários tipos de propulsão nuclear foram propostos, e alguns deles testados, para aplicações espaciais:

  • Propulsão de Pulso Nuclear Catalizado de Antimatéria
  • Propulsão Bussard
  • Propulsor de Fragmento de Fissão
  • Navegação de Fissão
  • Propulsor de Fusão
  • Reator Propulsor de Núcleo Gasoso
  • Propulsor Elétrico-Nuclear
  • Propulsor Fotônico-Nuclear
  • Propulsão de Pulso Nuclear
  • Propulsor Nuclear de Água Salgada
  • Propulsor Térmico Nuclear
  • Propulsor de Radio-Isótopo

Medicina Nuclear

A Medicina Nuclear é uma especialidade médica relacionada à Imagiologia que se ocupa das técnicas de imagem, diagnóstico e terapêutica utilizando partículas ou nuclídeos radioactivos.

"A Medicina Nuclear está para a Fisiologia como a Radiologia para a Anatomia". A Medicina Nuclear permite observar o estado fisiológico dos tecidos de forma não invasiva, através da marcação de moléculas participantes nesses processos fisiológicos com isótopos radioactivos. Estes, denunciam sua localização com a emissão de particulas detectáveis, sob a forma de raios gama (fóton). A detecção localizada de muitos fótons gama com uma camara gama permite formar imagens ou filmes que informem acerca do estado funcional dos órgãos. A maioria das técnicas usa ligações covalentes ou iónicas entre os elementos radioactivos e as substâncias alvo, mas hoje já existem marcadores mais sofisticados, como o uso de anticorpos especificos para determinada proteína, marcados radioactivamente. A emissão de particulas beta ou alfa, que possuem alta energia, pode ser útil do ponto de vista terapeutico, para destruir células ou estruturas indesejáveis.

Centros de Medicina Nuclear existem em regra apenas nos hospitais centrais, ou em clínicas privadas

Tipos de Radiação Utilizados

  1. Partícula Beta: consiste num Elétron, podendo portanto ser utilizado em terapia como por exemplo no tratamento de hipertiroidismo e do cancro da tiroideia, através do uso do Iodo-131 (terapêutica com Iodo radioactivo).
  1. Posítron: é a antipartícula do elétron. Consiste num "elétron" de carga positiva. É o tipo de radiação utilizada nos exames de PET (Positron Emission Tomography - Tomografia por Emissão de Posítrons). O principal radiofármaco utilizado nesse tipo de exame é o FDG (Glicose marcada com Fluor-18).
  1. Radiação Gama: é um fóton, ou seja, energia (onda eletromagnética). Os raios gama têm origem nos núcleos atómicos, e são utilizados na grande maioria dos exames em medicina nuclear. Os raios gama são detectados por um equipamento apropriado, a Câmara Gama. O principal radionúclido emissor de radiação gama utilizado em medicina nuclear é o Tecnécio-99mTc.

Tipos de Radiofármacos Utilizados

Um radiofármaco incorpora dois componentes. Um radionúclido, ou seja, uma substância com propriedades físicas adequadas ao procedimento desejado (partícula emissora de radiação beta, para terapêutica; ou partícula emissora de radiação gama, para diagnóstico) e uma vector fisiológico, isto é, uma molécula orgânica com fixação preferencial em determinado tecido ou órgão. Essencialmente, os radionúclidos são a parte radioactiva dos radiofármacos. Mas estes também possuem uma molécula (não radioactiva) que se liga ao radionúclido (marcação radioactiva) e o conduz para esse órgão ou estrutura que se pretende estudar.

  • Tecnécio-99-metaestável: é um radionúclido artificial, criado pelo homem. Tem vida-média de aproximandamente 6 horas, isto é, a sua Actividade, ou "quantidade de radioactividade" reduz-se para metade a cada 6 horas. Emite um fóton gama com 140.511keV de energia, ideal para a Camara Gama. É muito reactivo quimicamente, reagindo com muitos tipos de moléculas orgânicas. Esta grande versatilidade química permite que hoje em dia a grande maioria dos estudos em Medicina Nuclear sejam efectuados com base no uso de radiofármacos Tecneciados.
  • Iodo-123 ou Iodo-131: importantes no estudo da Tiroideia. Têm emissão de radiação gama e beta, respectivamente. Semi-vida de 8 dias para o I131, 13 horas para o I123.
  • Tálio-201: tem propriedades químicas semelhantes ao Potássio, tendo sido utilizado durante muitos anos para imagiologia cardíaca (integrava a bomba de sódio-potássio). Os seus fótons gama têm energias baixas, mas as imagens eram menos nítidas e a sua interpretação mais complexa. Semi-vida de 3 dias. Actualmente os estudos com Tálio-201 têm caído em desuso, face ao apareciamento de novos radiofármacos marcados com Tc-99m.
  • Gálio-67: tem propriedades semelhantes ao ião Ferro. É um emissor gama de média energia e apresenta semi-vida de 3 dias. É utilizado em estudos de Infecção e em Oncologia.
  • Índio-111: semi-vida 3 dias. É um emissor de radiação gama de média energia.
  • Xenon-133 e Cripton-81m: gases nobres radioactivos que podem ser usados na cintigrafia de ventilação pulmonar. No entanto, a maior parte dos estudos de ventilação pulmonar são feitos com um aerossol marcado com Tc-99m.
  • Flúor-18: emite positrões. É usado no exame PET.

Utilidade e Risco

A importância deste tipo de exames tem merecido cada vez mais reconhecimento. A principal limitação à maior utilização da medicina nuclear é o custo. No entanto é impossível observar muitos processos fisiológicos de forma não invasiva sem a Medicina Nuclear. A quantidade de radiação que o paciente recebe num exame de medicina nuclear é menor que a radiação recebida numa radiografia ou uma Tomografia Axial Computadorizada que visualize as mesmas estruturas. A quantidade de substância estranha é normalmente tão baixa que não há perigo de interferir significativamente com os processos fisiológicos normais. Os casos mais graves são muitas vezes os casos de hipersensibilidade (alergia) com choque anafilático do doente em reacção ao agente químico estranho.

Sistema Nervoso Central: Cintilografia Cerebral

  • Cintigrafia de Perfusão Cerebral: avalia a perfusão sanguínea das várias regiões do cérebro. É injectado um radionúclido lipofílico no sangue do paciente, que seja capaz de atravessar a Barreira Hemato-Encefálica. Ele é depois integrado nas mebranas celulares dos neurónios. É usado para indicar lesões causadas por enfartes - AVCs, ou para descobrir artérias parcialmente obstruidas que tenham um risco de enfartes futuros.

Endocrinologia

  • Cintigrafia da Tiroideia: A principal aplicação da Medicina Nuclear nesta área é o diagnóstico e terapia do Carcinoma bem diferenciado da Tiroideia. As células normais da Tireoideia assim como as do carcinoma bem diferenciado desse órgão, concentram o Iodo até concentrações muito superiores a outros órgãos, uma vez que o Iodo é uma parte importante das hormonas produzidas nessa glândula, a T3 e a T4. Este facto permite usar os isótopos radioactivos do Iodo, o I-123 (preferido porque tem semi-vida curta, energia mais adequada às Câmaras Gama e ausência de emissão beta, mas muito mais caro) e o I-131 para formar imagens funcionais da Tiroideia.
  • Terapia com I-131: O I-131 pode além disso ser usado para terapia do carcinoma bem diferenciado da tiroideia. Em muito altas concentrações, a emissão de partículas beta pelos radionúclidos destroi as células ao redor. Uma vez que a Tiroideia concentra muitas vezes mais o ião que os outros órgãos, é ela o órgão alvo. Esta terapia é usada após tireoidectomia para eliminar focos de metástase do cancro. É feita terapia de substituição das hormonas tiroideias (são ingeridas regularmente sob a forma de medicamento).
  • Cintigrafia Corporal com 123I-MIBG: é uma técnica de estudo dos tumores neuroendócrinos. O radiofármaco utilizado, metaiodobenzilguanidina-Iodo-123, um análogo da guanetidina que é captada para os grânulos cromafins das células neuroendócrinas. São indicações para este exame a suspeita de feocromocitoma, tumores carcinóides neuroblastoma pediátrico, carcinoma medular da Tiroideia e outras neoplasias derivadas da crista neural. O 123I-MIBG também é usado, em maiores concentrações, na terapia de algumas destas condições.
  • Cintigrafia do Córtex das Suprarenais com 131I-Iodocolesterol: têm afinidade para o córtex da glândula supra-renal. Utilizado no diagnóstico de Sindrome de Cushing, hiperaldosteronismo e hiperandrogenismo. Detecta lesões da supra-renal.
  • Cintigrafia das Paratiroideias: permite avaliar a funcionalidade das glândulas paratiroideias. É preparado um Radiofármaco com afinidade para estas glândulas (geralmente o 99mTc-sestaMIBI ou o 99mTc-Tetrofosmina) que é depois administrado ao paciente por via endovenosa. São realizadas duas séries de imagens: umas cerca de 15min após a injecção, que permite a visualização das glândulas paratiroideias, bem como a glândula tiroideia; outras cerca de 2h após a injecção, onde já não é suposto visualizar as glândulas paratiroideias, nem a glândula tiroideia. A ideia é averiguar sobre o "washout" do radiofármaco. Em casos de Adenoma das Paratiroideias, continua a visualizar-se actividade nas glândulas paratiroideias, mesmo 2h apósa administração do radiofármaco. Por vezes é exigido que este exame seja comparado com uma Cintigrafia da Tiroideia.

Pneumologia: Cintigrafia Pulmonar

  • Cintigrafia de Perfusão e Ventilação: são duas técnicas que devem ser executadas sempre que possível (frequentemente de emergência). É o principal método de avaliação da grave condição potencialmente mortal que é a tromboembolia pulmonar. A parte de perfusão é uma avaliação do fluxo sanguíneo por todo o pulmão, ou seja, se há obstruções nos vasos, como em casos de tromboembolia pulmonar. Ela é efectuada pela injecção de aglomerados de albumina marcados com tecnécio-99m no sangue. Qualquer área que não seja irrigada ficará pálida (zona fria) na imagem obtida. A cintigrafia de ventilação indica as áreas do pulmão que ventilam convenientemente. Ela é feita pela inalação de marcadores radioactivos gasosos ou sob a forma de aérossois, como isótopos de gases nobres radioactivos ou microparticulas marcadas com tecnécio (technegas). O resultado do exame vem da comparação entre as zonas frias (pouco radioactivas) da perfusão e as da ventilação. Se houver grandes e múltiplas defeitos de perfusão não consonantes com áreas de defeitos de ventilação, é provável o diagnóstico de tromboembolismo pulmonar. De outro modo poderá haver obstrução de um brônquio ou bronquiolo (apenas zona fria na ventilação), ou outras condições.

Cardiologia Nuclear

  • Angiografia de radionúclidos de Equilibrio (ARNE): é usada para avaliar a função ventricular, especialmente a do ventrículo esquerdo. O técnecio-99m é feito reagir quimicamente com a hemoglobina dos eritrócitos é injectado no sangue. Estes eritrócitos marcados espalham-se por todo o sangue da pessoa rapidamente o que torna possível então fazer um filme do batimentos cardiacos a partir das emissões e avaliar a quantidade de sangue que permanece nos ventriculos aquando da sístole e da diástole (cálculo da fracção de ejecção). Estes filmes dão indicações sobre a performance cardiaca em casos de miocardiopatias, valvulopatias e outros.
  • Cintigrafia de Perfusão do Miocárdio em Esforço e em Repouso: é indicada para avaliar doentes com enfartes do miocárdio prévios, dispneia de esforço, ou angina pectoris. É feito um estudo por SPECT ou Tomografia Computorizada de Emissão de Fótons Simples. Basicamente a camara gama roda e tira imagens de várias posições, que o computador então reconstroi em imagens 3D. São usados os compostos Tálio-201 (um análogo do ião Potássio, K+, em cujo transportador os miócitos são ricos), 99mTc-Tetrofosmina (absorvida pelas células ricas em mitocôndrias, como os miócitos) ou 99mTc-SestaMIBI, todos absorvidos pelas células do miocárdio (se houver fluxo sanguineo próximo). São efectuadas duas medições da radioactividade: em repouso e em esforço máximo. Se houver zona fria ou de radioactividade muito reduzida em ambas as situações, haverá apenas tecido fibroso derivado de um enfarte prévio nesse ponto do coração (já não existem miócitos); se houver zona fria em esforço, mas não em repouso, então deverá haver limitações ao fluxo sanguineo para essa região, ou seja ele é suficiente para o repouso mas a artéria está obstruida parcialmente e quando há vasodilatação devido ao esforço, o volume nas outras artérias desobstruidas aumenta muito mais (porque num tubo o aumento do raio de 2 para 3 mm corresponde a muito mais volume extra que de 1 para 2mm)- logo essa area está com menos radioactividade comparativamente.
  • Estudo de Viabilidade do Miocárdio (Repouso sob Nitroglicerina): é um estudo idêntico à Cintigrafia de Perfusão do Miocárdio, sendo apenas realizado o estudo em Repouso. A injecção do Radiofármaco é precedida pela administração oral de um comprimido de Nitroglicerina. Desta forma, é obtida uma imagem do coração em condições óptimas de fluxo sanguíneo. Desta forma, todas as células viáveis (vivas) terão acesso à irrigação coronária.

Nefrologia Nuclear

  • Cintigrafia Renal com 99mTc-DMSA: o Parênquima do Rim é estudado com a molécula DMSA (ácido dimercaptosuccinico) que é feita reagir in vitro com Tecnécio-99m radioactivo. O DMSA-Tc99m é injectado no sangue do paciente, de onde é simultaneamente filtrado, reabsorvido e secretado a nível glomerular, e do Tubo Contornado Proximal. O fármaco fica na sua maioria localizado no Córtex renal desde que este esteja funcional e capaz de filtrar, reabsorver e secretar. As zonas frias (pálidas) de pouca actividade radioactiva obtidas no filme corresponderão assim a zonas do córtex do Rim que estejam em insuficiência ou não estejam a funcionar a 100%. Este método tem sensibilidade maior que a Ecografia para detecção de pielonefrites, malformações ou cicatrizes, nomeadamente em Pediatria.
  • Cintigrafia Renal com 99mTc-DTPA: o DTPA, mesmo acoplado ao tecnécio, é quase totalmente eliminado por filtração glomerular sem quase nenhuma secreção ou reabsorção. É uma técnica de avaliação do Glomérulo Renal e sua capacidade de filtração efectiva, nomeadamente das Glomerulopatias.
  • Renograma Basal com 99mTc-MAG3: o 99mTc-MAG3 ou mercaptoacetiltriglicina-99mTc é eliminada principalmente por secreção tubular. A sua rápida excreção permite a avaliação não só dessa função renal mas também da perfusão, e integridade do sistema colector. É usada na monitorização da insuficiência renal, obstrução dos canais colectores e refluxo de urina.
  • Renograma com prova diurética: usado no diagnóstico diferencials entre a obstrução das vias urinárias, nomeadamente por cálculos ("pedra dos rins"), e a Estase funcional dessas vias. A administração de um diurético como a furosemida acelera a excreção de urina pelo rim. Qualquer dificuldade de micção que não seja obstrução mecânica das vias pode ser distinguido aumentando suficientemente o volume de urina secretada pelos rins. Se houver obstrução mecânica o rádiofarmaco na urina se concentrará proximalmente ao ponto bem definido da obstrução, e pouco ou nenhum passará. Se for estase funcional (e.g. se o músculo do ureter não propelir a urina), o aumento de volume será suficiente para fazer avançar a urina nas vias por si mesmo, e o rádiofármaco ocupará toda a via urinária.
  • Renograma com Captopril: é usada como teste de detecção de hipertensão arterial devido a estenose (causada pela aterosclerose ou placa de colesterol) da artéria renal. É administrado Captopril, um inibidor da enzima conversora da angiotensina, que tem o efeito de diminuir a perfusão (fluxo sanguíneo) renal. O radiofármaco utilizado é o 99mTc-DTPA. Se a radioactividade vinda do rim diminuir consideravelmente, a artéria correspondente já deveria estar estenosada antes da vasocontrição devida ao captopril (porque um tubo de 3mm que diminui para 2 perde muito menos volume que um de 2 que diminui para 1mm).
  • Cistocintigrafia Directa ou Indirecta: é usada no diagnóstico do refluxo vesico-ureteral (da bexiga de volta ao ureter) da urina. Há dois tipos. Na cistocintigrafia directa, o doente é catéterizado (tubo colocado no ureter) e a solução radioactiva é introduzida na bexiga. Na indirecta o rádiofarmaco é injectado no sangue e as imagens feitas aquando do percurso da urina radioactiva pelas vias urinárias inferiores. Em qualquer caso, o imagiologista verifica se há refluxo da urina radioactiva.

Osteoarticular

  • Cintifragia Óssea de Corpo Inteiro: é usada São usados derivados de disfosfatos resistentes às enzimas fosfatases, quelados com Tecnécio-99m como o 99mTc-metilenodifosfonato (99mTc-MDP) e o 99mTc-hidroximetilenodifosfonato (99mTc-HMDP), os quais são injectados no sangue. Rapidamente fixam-se com cálcio ao mineral apatite do osso. Uma vez que os processos de cristalização normais dos sais de cálcio e fosfato no osso são os mesmos da fixação do radiofármaco, esta técnica permite detectar áreas de grande ou insuficiente formação de mineral dentro dos ossos. Assim detectam-se áreas frias ou hipofixantes, com pouca radioactividade, que correspondem a grande actividade destruidora de osso como a osteoclastica ou baixa actividade geradora de osso como a osteoblástica. Causas possíveis de hipofixação são a necrose óssea (por isquémia, enfarte ou infecção-osteomielite), isquémia por anemia falciforme, ou metástases agressivas. É esta última a indicação mais importante, uma vez que permite detectar lesões causadas por metastases de cancros de outros órgãos ou do próprio osso muito mais precocemente que o raio-x, e permite fazer o estadiamento da neoplasia. Os cancros que mais frequentemente metastizam para o osso são os da próstata, mama e pulmão.
  • Cintilografia Óssea com estudo de três fases
  • Estudo Ósseo Tomográfico (complementar)
  • Cintilografia da Medula Óssea com 99mTc-Colóides

Cancro: Cintilografias Oncológicas

  • Cintigrafia com Gálio-67: o Gálio-67 comporta-se como o ião Ferro3+ e portanto liga-se à transferrina plasmática. A maior vascularização das neoplasias e a sua maior necessidade de ferro leva à acumulação do radiofármaco nas células neoplásicas, associado à ferritina. É possível colher informações de muitos tipos de tumores com esta técnica mas ela é principalmente indicada para estadiamento de linfomas. Uma vez que o Gálio não se concentra em lesões necrosadas ou fibróticas ele permite detectar tumores activos de forma superior À Tomografia computadorizada ou Ressonância Magnética.
  • Cintilografia com 123I-MIBG
  • Cintilografia com 131I-Iodocolesterol ou NP-59
  • Cintilografia dos Receptores da Somatostatina com 111In-Pentatreótido: o 111-Índio-Pentatreótido é um análogo radioctivo da hormona somatostatina. Usado no estadiamento de tumores neuroendócrinos, como os do ilhéu do pâncreashipófise e carcinóides.
  • Cintilografia com 99mTc-sestaMIBI: este radiofármaco concentra-se nas mitocôndrias, logo marca a viabilidade celular (a falta de integridade das membranas mitocondriais é indicativa de stress celular). É no entanto usado como indicador da susceptibilidade à quimioterapiade uma neoplasia, porque ele é excretado da célula pelo mesmo transportador membranar que excreta os químicos citostáticos (quanto mais transportador menos radioactividade e menos susceptibilidade à quimio).
  • Cintilografia Mamária: a primeira técnica de detecção de tumores mamários é a mamografia, uma forma de radiografia. A cintigrafia só é usada se houver dúvidas após mamografia. São usados o 99mTc-MIBI ou o 99mTc-Tetrofosmina.
  • Linfocintigrafia: técnica de determinação do gânglio sentinela. O gânglio sentinela é o primeiro gânglio linfático que drena uma neoplasia, e é o primeiro a receber células metastáticas. É essencial após descoberta de tumor maligno verificar se o ganglio sentinela está invadido, pois o inicio de matastização determina estratégias terapêuticas mais agressivas. São usados derivados da albumina com Tecnécio radioactivo em solução, que são injectados no tumor. Este radiofármaco é então drenado pelos vasos linfáticos até ao gânglio mais próximo. Indicações frequentes são o carcinoma da mama e o melanoma.